Boosting NOS Production a Guide

Introduction

Nitric oxide synthase (NOS) is an enzyme responsible for producing nitric oxide (NO), a signaling molecule that plays a crucial role in various physiological processes, including vasodilation, immune response, and neurotransmission. Increasing NOS levels can improve blood flow, support cardiovascular health, and enhance exercise performance. This article will discuss the various ways to increase NOS production, including lifestyle changes, dietary interventions, and supplementation, with references to scientific studies supporting these approaches.

Lifestyle Changes

A. Exercise

Regular physical activity has been shown to increase NOS production by promoting the expression and activity of endothelial nitric oxide synthase (eNOS) (1). Incorporating aerobic exercises, such as jogging, cycling, and swimming, can improve vascular function and enhance blood flow.

B. Sun Exposure

Moderate sun exposure can stimulate eNOS activity, thereby increasing NO production. Ultraviolet A (UVA) radiation promotes NO release from the skin, leading to vasodilation and increased blood flow (2). Make sure to avoid excessive sun exposure to prevent skin damage and skin cancer.

Dietary Interventions

A. Nitrate-rich Foods

Dietary nitrates, found in vegetables such as beetroot, spinach, and arugula, can increase NO production by providing a substrate for eNOS (3). Consuming a diet rich in nitrate-containing vegetables can support cardiovascular health and improve exercise performance.

B. Antioxidant-rich Foods

Foods high in antioxidants, such as berries, dark chocolate, and green tea, can promote eNOS activity by reducing oxidative stress (4). Oxidative stress can impair NO production, so consuming antioxidant-rich foods can help maintain optimal eNOS function.

Supplementation

A. L-arginine

L-arginine is an amino acid that serves as a substrate for NOS, facilitating NO production (5). Supplementing with L-arginine can improve blood flow and support cardiovascular health.

B. L-citrulline

L-citrulline is another amino acid that can increase NO production by increasing L-arginine levels in the body (6). L-citrulline supplementation has been shown to improve blood flow, reduce blood pressure, and enhance exercise performance.

C. Nitrate Supplements

Nitrate supplements, such as beetroot juice, have been shown to increase NO production and improve exercise performance by providing nitrates as substrates for eNOS (7). Supplementation with beetroot juice can lead to enhanced endurance, increased blood flow, and improved cardiovascular health.

D. Quercetin

Quercetin, a natural flavonoid found in foods like onions, apples, and berries, has been shown to increase eNOS expression and activity, thereby enhancing NO production (8). Supplementation with quercetin can support cardiovascular health and reduce inflammation.

E. Pycnogenol

Pycnogenol, a patented extract derived from French maritime pine bark, has been demonstrated to increase eNOS expression and NO production (9). Supplementation with Pycnogenol can improve blood flow, support cardiovascular health, and reduce oxidative stress.

Conclusion

Increasing nitric oxide synthase production in the body can be achieved through a combination of lifestyle changes, dietary interventions, and supplementation. Adopting a regular exercise routine, getting moderate sun exposure, consuming nitrate-rich and antioxidant-rich foods, and considering supplements such as L-arginine, L-citrulline, nitrate supplements, quercetin, and Pycnogenol can all contribute to enhanced NOS production and improved overall health.

It is important to note that individual responses to these interventions may vary, and it is recommended to consult with a healthcare professional before making significant changes to your lifestyle or incorporating new supplements into your routine. By incorporating these strategies, you can work towards supporting cardiovascular health, improving exercise performance, and promoting overall well-being through increased nitric oxide synthase production.

Arginine and Citrulline

L-arginine and L-citrulline are amino acids that play crucial roles in NO production. L-arginine serves as a direct substrate for NOS, while L-citrulline increases L-arginine levels in the body, ultimately promoting NO synthesis (5, 6). Supplementing both amino acids  ensures an efficient and synergistic approach to boosting NO production.

Beetroot

Beetroot is a rich source of dietary nitrates, which provide substrates for eNOS and increase NO production (3). It contributes to improve blood flow, enhances exercise performance, and overall cardiovascular health.

Grape Seed, Grape Skin, and Pomegranate

Grape seed, grape skin, and pomegranate are potent sources of polyphenols and antioxidants, which can support eNOS activity by reducing oxidative stress (4). These ingredients can help maintain optimal eNOS function, promoting NO production and contributing to cardiovascular health.

Vitamin E and Vitamin C

Vitamin E and vitamin C are antioxidants that help protect cells from oxidative damage, which can impair NO production. (10)

Vitamin D and Vitamin K

Vitamin D has been shown to increase eNOS expression, thereby enhancing NO production (11). Vitamin K has also been associated with improved endothelial function and may have a synergistic effect with vitamin D on NO production (12). 

References:

(1) Green, D. J., Maiorana, A., O'Driscoll, G., & Taylor, R. (2004). Effect of exercise training on endothelium‐derived nitric oxide function in humans. The Journal of physiology, 561(1), 1-25. https://doi.org/10.1113/jphysiol.2004.068197

(2) Liu, D., Fernandez, B. O., Hamilton, A., Lang, N. N., Gallagher, J. M., Newby, D. E., ... & Feelisch, M. (2014). UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase. Journal of Investigative Dermatology, 134(7), 1839-1846. https://doi.org/10.1038/jid.2014.27

(3) Hord, N. G., Tang, Y., & Bryan, N. S. (2009). Food sources of nitrates and nitrites: the physiologic context for potential health benefits. The American journal of clinical nutrition, 90(1), 1-10. https://doi.org/10.3945/ajcn.2008.27131

(4) Förstermann, U., & Li, H. (2011). Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. British journal of pharmacology, 164(2), 213-223. https://doi.org/10.1111/j.1476-5381.2011.01395.x

(5) Böger, R. H. (2004). The pharmacodynamics of L-arginine. Journal of Nutrition, 134(10), 2807S-2811S. https://doi.org/10.1093/jn/134.10.2807S

(6) Bailey, S. J., Blackwell, J. R., Lord, T., Vanhatalo, A., Winyard, P. G., & Jones, A. M. (2015). L-citrulline supplementation improves O2 uptake kinetics and high-intensity exercise performance in humans. Journal of Applied Physiology, 119(4), 385-395. https://doi.org/10.1152/japplphysiol.00192.2014

(7) Jones, A. M., Thompson, C., Wylie, L. J., & Vanhatalo, A. (2018). Dietary nitrate and physical performance. Annual review of nutrition, 38, 303-328. https://doi.org/10.1146/annurev-nutr-082117-051622

(8) Larson, A. J., Symons, J. D., & Jalili, T. (2012). Therapeutic potential of quercetin to decrease blood pressure: a review of efficacy and mechanisms. Advances in Nutrition, 3(1), 39-46. https://doi.org/10.3945/an.111.001271

(9) Enseleit, F., Sudano, I., Périat, D., Winnik, S., Wolfrum, M., Flammer, A. J., ... & Lüscher, T. F. (2012). Effects of Pycnogenol on endothelial function in patients with stable coronary artery disease: a double-blind, randomized, placebo-controlled, cross-over study. European Heart Journal, 33(13), 1589-1597. https://doi.org/10.1093/eurheartj/ehr482

(10) Tousoulis, D., Kampoli, A. M., Tentolouris, C., Papageorgiou, N., & Stefanadis, C. (2012). The role of nitric oxide on endothelial function. Current Vascular Pharmacology, 10(1), 4-18. https://doi.org/10.2174/157016112798829760

(11) Andrukhova, O., Slavic, S., Zeitz, U., Riesen, S. C., Heppelmann, M. S., Ambrisko, T. D., ... & Erben, R. G. (2014). Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Molecular Endocrinology, 28(1), 53-64. https://doi.org/10.1210/me.2013-1252

(12) Vossen, L. M., Schurgers, L. J., van Varik, B. J., Kietselaer, B. L., Vermeer, C., Meeder, J. G., ... & de Leeuw, P. W. (2015). Menaquinone-7 supplementation to reduce vascular calcification in patients with coronary artery disease: rationale and study protocol (VitaK-CAC Trial). Nutrients, 7(10), 8905-8915. https://doi.org/10.3390/nu7105423


Chelation Supplement

Heavy Metals and Nitric Oxide Synthase

Introduction

Heavy metals, such as lead, mercury, cadmium, and arsenic, are environmental pollutants that can accumulate in the body and pose significant health risks. One of the lesser-known consequences of heavy metal exposure is the negative impact on nitric oxide synthase (NOS) production. NOS is an enzyme responsible for producing nitric oxide (NO), a signaling molecule that plays a crucial role in various physiological processes, including vasodilation, immune response, and neurotransmission. This article will discuss the mechanisms through which heavy metals can decrease NOS production, the health implications of this reduction, and strategies to counteract these effects, with references to scientific studies supporting these claims.

 

Mechanisms of Heavy Metal-Induced NOS Inhibition

 

A. Oxidative Stress

Heavy metals can induce oxidative stress, which is characterized by an imbalance between the production of reactive oxygen species (ROS) and the body’s antioxidant defense mechanisms (1). Excessive ROS production can lead to the inactivation of NOS and a decrease in NO production (2). Oxidative stress also contributes to the uncoupling of endothelial NOS (eNOS), a process in which the enzyme produces superoxide instead of NO, further exacerbating the negative effects on NOS activity (3).

 

 

B. Disruption of NOS Expression and Function

Heavy metals can directly interact with NOS enzymes or alter their expression, decreasing NO production (4). For example, cadmium has been shown to inhibit NOS activity by displacing essential cofactors, such as zinc, which are necessary for proper enzyme function (5). Additionally, heavy metals can interfere with the cellular signaling pathways that regulate NOS expression, ultimately suppressing enzyme production (6).

 

 

 

C. Inhibition of NO Bioavailability

Heavy metals can also decrease NO bioavailability by increasing the production of molecules that scavenge and inactivate NO, such as asymmetric dimethylarginine (ADMA) (7). ADMA, an endogenous inhibitor of NOS, competes with L-arginine, the substrate for NOS, for binding to the enzyme, thereby decreasing NO production (8).

 

Health Implications of Heavy Metal-Induced NOS Inhibition

 

A. Cardiovascular Disease

Decreased NOS activity and NO production from heavy metal exposure can impair endothelial function, reducing vasodilation and increasing blood pressure (9). This can contribute to the development of cardiovascular diseases, such as atherosclerosis and hypertension (10).

 

B. Neurological Disorders

NO is essential for normal neurotransmission and brain function. Reduced NOS activity and NO production due to heavy metal exposure can lead to altered neurotransmitter release, synaptic plasticity, and neuronal survival, contributing to the development of neurological disorders such as Parkinson’s disease and cognitive impairment (11, 12).

 

 

C. Impaired Immune Response

NO plays a critical role in the immune response by modulating the function of immune cells and influencing cytokine production. Reduced NO production due to heavy metal-induced NOS inhibition can impair the immune system’s ability to fight off infections and maintain proper inflammatory responses (13).

 

 

Strategies to Counteract Heavy Metal-Induced NOS Inhibition

 

A. Chelation Therapy

Chelation therapy involves the administration of chelating agents, such as ethylenediaminetetraacetic acid (EDTA) or dimercaptosuccinic acid (DMSA), which bind to heavy metals and facilitate their excretion from the body. By reducing the body’s burden of heavy metals, chelation therapy can help restore NOS activity and improve overall health (14).

 

B. Antioxidant Supplementation

Antioxidants, such as vitamins C and E, can help counteract oxidative stress from heavy metals and protect NOS activity (15). Supplementation with antioxidants may help restore NO production and support overall health in individuals exposed to heavy metals.

 

C. Nutritional and Lifestyle Interventions

Consuming a diet rich in antioxidants, essential nutrients, and anti-inflammatory compounds can help support NOS activity and counteract the effects of heavy metal exposure (16). Additionally, engaging in regular physical activity, maintaining healthy body weight, and avoiding exposure to environmental pollutants can further protect NOS function and overall health.

 

Conclusion

Heavy metals can negatively impact nitric oxide synthase production through various mechanisms, including inducing oxidative stress, disrupting NOS expression and function, and inhibiting NO bioavailability. The detrimental effects of heavy metals on NOS activity can contribute to the development of cardiovascular diseases, neurological disorders, and impaired immune responses. Chelation therapy, antioxidant supplementation, and nutritional and lifestyle interventions can be employed to counteract these effects. Individuals can proactively protect their health and mitigate the risks associated with heavy metal exposure by understanding the relationship between heavy metals and NOS production.

A Comprehensive Approach to Support NOS Production

 This article discusses how can some components contribute to heavy metal detoxification and supports NOS production.

 

EDTA

Ethylenediaminetetraacetic acid (EDTA) is a well-known chelating agent that binds to heavy metals, such as lead, cadmium, and mercury, facilitating their excretion from the body (17). By removing heavy metals, EDTA can help restore NOS activity and mitigate the negative effects of these metals on nitric oxide (NO) production (18).

 

Modified Citrus Pectin

Modified citrus pectin is a form of pectin that has been altered to improve its bioavailability and absorption. It has been shown to bind and remove heavy metals from the body, such as lead, mercury, and cadmium (19). Modified citrus pectin can help protect NOS activity and support NO production by aiding in heavy metal detoxification.

 

Chlorella

Chlorella is a single-celled green alga that has been shown to possess heavy metal-binding properties, particularly for mercury (20). By assisting in removing heavy metals from the body, chlorella can help alleviate the negative effects of these metals on NOS production and support overall health.

 

Cilantro

Cilantro, also known as coriander, has been shown to have heavy metal-chelating properties, particularly for lead and mercury (21). By aiding in detoxifying heavy metals, cilantro can help protect NOS activity and support NO production.

 

Shilajit

Shilajit, a natural resinous substance found in the Himalayas, has been reported to have antioxidant and anti-inflammatory properties, which may help counteract heavy metal-induced oxidative stress and inflammation (22). Shilajit can help protect NOS activity and maintain NO production by reducing oxidative stress. Additionally, shilajit has been reported to possess metal-chelating properties, which may further contribute to its heavy metal detoxification effects (23).

 

Zeolite

Zeolites are natural or synthetic minerals with a unique porous structure, which allows them to bind to and trap heavy metals, such as lead, cadmium, and mercury (24). By assisting in removing heavy metals from the body, zeolites can help protect NOS activity and support NO production.

 

 

References:

(1) Valko, M., Morris, H., & Cronin, M. T. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 1161-1208. https://doi.org/10.2174/0929867053764635

(2) Förstermann, U., & Sessa, W. C. (2012). Nitric oxide synthases: regulation and function. European Heart Journal, 33(7), 829-837. https://doi.org/10.1093/eurheartj/ehr304

(3) Förstermann, U., & Münzel, T. (2006). Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation, 113(13), 1708-1714. https://doi.org/10.1161/CIRCULATIONAHA.105.602532

(4) Brüne, B., Schmidt, K. U., & Ullrich, V. (1990). Activation of soluble guanylate cyclase by carbon monoxide and inhibition by superoxide anion. European Journal of Biochemistry, 192(2), 683-688. https://doi.org/10.1111/j.1432-1033.1990.tb19283.x

(5) Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2001). Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1(6), 529-539. https://doi.org/10.2174/1568026013394831

(6) Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87(1), 315-424. https://doi.org/10.1152/physrev.00029.2006

(7) Kielstein, J. T., & Cooke, J. P. (2005). Cardiology and nephrology converge on a common problem: asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, predicts cardiovascular events. Journal of the American Society of Nephrology, 16(9), 2454-2457. https://doi.org/10.1681/ASN.2005060610

(8) Böger, R. H. (2006). Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the “L-arginine paradox” and acts as a novel cardiovascular risk factor. Journal of Nutrition, 136(10), 2882S-2887S. https://doi.org/10.1093/jn/136.10.2882S

(9) Vaziri, N. D. (2008). Mechanisms of lead-induced hypertension and cardiovascular disease. American Journal of Physiology-Heart and Circulatory Physiology, 295(2), H454-H465. https://doi.org/10.1152/ajpheart.00158.2008

(10) Navas-Acien, A., Guallar, E., Silbergeld, E. K., & Rothenberg, S. J. (2007). Lead exposure and cardiovascular disease: a systematic review. Environmental Health Perspectives, 115(3), 472-482. https://doi.org/10.1289/ehp.9785

(11) Farina, M., Avila, D. S., da Rocha, J. B., & Aschner, M. (2013). Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochemistry International, 62(5), 575-594. https://doi.org/10.1016/j.neuint.2012.12.006

(12) Sanders, T., Liu, Y., Buchner, V., & Tchounwou, P. B. (2009). Neurotoxic effects and biomarkers of lead exposure: a review. Reviews on Environmental Health, 24(1), 15-45. https://doi.org/10.151 5/reveh.2009.24.1.15

(13) Bogdan, C. (2001). Nitric oxide and the immune response. Nature Immunology, 2(10), 907-916. https://doi.org/10.1038/ni1001-907

(14) Flora, S. J., & Pachauri, V. (2010). Chelation in metal intoxication. International Journal of Environmental Research and Public Health, 7(7), 2745-2788. https://doi.org/10.3390/ijerph7072745

(15) Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118-126. https://doi.org/10.4103/0973-7847.70902

(16) Crinnion, W. J. (2010). The role of nutritional supplements in the treatment of heavy metal toxicity. Alternative Medicine Review, 15(1), 33-47. http://archive.foundationalmedicinereview.com/publications/15/1/33.pdf

(17) Flora, S. J., & Pachauri, V. (2010). Chelation in metal intoxication. International Journal of Environmental Research and Public Health, 7(7), 2745-2788. https://doi.org/10.3390/ijerph7072745

(18) Vaziri, N. D. (2008). Mechanisms of lead-induced hypertension and cardiovascular disease. American Journal of Physiology-Heart and Circulatory Physiology, 295(2), H454-H465. https://doi.org/10.1152/ajpheart.00158.2008

(19) Eliaz, I., Weil, E., & Wilk, B. (2019). Integrative medicine and the role of modified citrus pectin/alginates in heavy metal chelation and detoxification – five case reports. Functional Foods in Health and Disease, 8(12), 430-443. https://doi.org/10.31989/ffhd.v8i12.569

(20) Uchikawa, T., Yasutake, A., Kumamoto, Y., Maruyama, I., Kumamoto, S., & Ando, Y. (2011). The influence of Parachlorella beyerinckii CK-5 on the absorption and excretion of methylmercury (MeHg) in mice. Journal of Toxicological Sciences, 36(1), 121-130. https://doi.org/10.2131/jts.36.121

(21) Aga, M., Iwaki, K., Ueda, Y., Ushio, S., Masaki, N., Fukuda, S., … & Ito, Y. (2001). Preventive effect of Coriandrum sativum (Chinese parsley) on localized lead deposition in ICR mice. Journal of Ethnopharmacology, 77(2-3), 203-208. https://doi.org/10.1016/S0378-8741(01)00289-X

(22) Carrasco-Gallardo, C., Guzmán, L., & Maccioni, R. B. (2012). Shilajit: a natural phytocomplex with potential procognitive activity. International Journal of Alzheimer’s Disease, 2012, 674142. https://doi.org/10.1155/2012/674142

(23) Bhattacharyya, S., & Pal, D. (2013). In vitro study of the effects of Shilajit on the activities of Ehrlich ascites tumor cells. Pharmaceutical Biology, 51(2), 269-272. https://doi.org/10.3109/13880209.2012.727360

(24) Selvam, T., Schwieger, W., & Dathe, W. (2017). The potential of natural and modified zeolites for heavy metal capture in contaminated waters. In Natural Mineral Nanotubes (pp. 363-380). CRC Press. https://doi.org/10.1201/b18522-16


nos synthase

What is Nitric Oxide Synthase?

NITRIC OXIDE SYNTHASE

Nitric oxide synthase (NOS) is an enzyme responsible for producing nitric oxide (NO), a molecule that plays an important role in regulating blood vessel function and blood pressure. There are three types of NOS: endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS).

Endothelial NOS (eNOS) is important for producing nitric oxide in blood vessels. When eNOS is activated, it produces nitric oxide, which helps relax blood vessels and improve blood flow.

Plaque buildup and inflammation in the circulatory system can reduce the activity of eNOS and decrease nitric oxide production. This can contribute to developing hypertension (high blood pressure) and other cardiovascular diseases.

What can boost NOS?

Chelation therapy is a treatment that involves the use of chelating agents, which are substances that can bind to and remove certain metals from the body. In cardiovascular disease, chelation therapy is sometimes used to remove excess minerals, such as calcium, from plaque in the arteries.

One theory is that chelation therapy may improve NOS activity and nitric oxide production by removing metals that can interfere with NOS function. However, the evidence for this is still limited and more research is needed to fully understand the potential benefits and risks of chelation therapy for cardiovascular disease.

Fasting

Both juice and water fasting have been shown to have potential health benefits that may indirectly support NOS production and improve cardiovascular health.

For example, juice fasting and water fasting can help to reduce inflammation, improve insulin sensitivity, and promote weight loss, all of which can contribute to better cardiovascular health. By reducing inflammation and oxidative stress, fasting may also help to support NOS activity and increase NO production.

One study published in the journal Nutrition & Metabolism found that a 3-day water fast led to significant improvements in various cardiovascular risk factors, including blood pressure, blood lipids, and markers of inflammation and oxidative stress. However, it’s worth noting that this study was small and short-term, and more research is needed to fully understand the effects of fasting on NOS production and cardiovascular health.

It’s also important to note that fasting may not be appropriate or safe for everyone, especially those with certain medical conditions or who are pregnant or breastfeeding. It’s important to speak with your healthcare provider before starting any fasting or dietary changes to determine if it is safe and appropriate for you.

nitric oxide synthase

What can lower NOS?

Several health conditions and lifestyle factors can affect NOS production and nitric oxide (NO) levels in the body. Some examples include:

  1. Diabetes: Diabetes can impair NOS activity and reduce NO production, which can contribute to the development of cardiovascular complications associated with diabetes.
  2. Obesity: Obesity can lead to chronic inflammation and oxidative stress, which can impair NOS activity and decrease NO production.
  3. Smoking: Smoking can damage blood vessels and reduce NOS activity, leading to decreased NO production.
  4. Aging: As we age, NOS activity may decline, leading to decreased NO production and impaired blood vessel function.
  5. High blood pressure: High blood pressure can cause damage to blood vessels and impair NOS activity, leading to decreased NO production.
  6. Certain medications: Some medications, such as certain blood pressure medications, can interfere with NOS activity and decrease NO production.
  7. Chronic kidney disease: Chronic kidney disease can lead to impaired NOS activity and reduced NO production, which may contribute to the development of cardiovascular disease.

nos synthase

Seedy Friends

There is some evidence to suggest that the consumption of certain seed oils, such as soybean oil and corn oil, may reduce nitric oxide (NO) production by impairing NOS activity.

For example, a study published in the American Journal of Physiology-Heart and Circulatory Physiology found that rats fed a diet high in soybean oil had reduced NOS activity and NO production in their blood vessels compared to rats fed a diet high in coconut oil.

Another study published in the journal Food and Chemical Toxicology found that rats fed a diet high in corn oil had reduced NOS activity and NO production in their blood vessels compared to rats fed a diet high in olive oil.

While these findings suggest that certain seed oils may impair NOS activity and reduce NO production, it’s important to note that these studies were conducted in animals. The relevance to humans is not yet fully understood. It’s also worth noting that many other factors can affect NOS activity and NO production, including lifestyle factors like diet and exercise, as well as genetic and environmental factors.

 

Brush & Floss

There is also good evidence to suggest that good oral hygiene, including brushing and flossing, may help to support nitric oxide (NO) production by promoting healthy bacteria in the mouth.

Studies have shown that certain types of bacteria in the mouth, such as those that cause gum disease, can produce harmful toxins that can impair NOS activity and reduce NO production. By promoting healthy bacteria in the mouth through good oral hygiene practices, it may be possible to reduce the levels of harmful toxins and support NOS activity and NO production.

For example, a study published in the Journal of Periodontology found that people with periodontitis (a type of gum disease) had lower levels of NO in their saliva compared to people with healthy gums. Another study published in the Journal of Clinical Periodontology found that treating gum disease with scaling and root planing (a type of deep cleaning) led to significant improvements in NOS activity and NO production in the blood vessels.

Nitric Oxide Synthase & Grape Seed Extract

There is some good evidence to suggest that grape seed extract may have a positive effect on nitric oxide synthase (NOS) activity and nitric oxide (NO) production.

Grape seed extract is rich in antioxidants, including flavonoids and proanthocyanidins, which may help to reduce oxidative stress and inflammation, both of which can impair NOS activity and NO production.

A study published in the Journal of Cardiovascular Pharmacology found that treatment with grape seed extract led to significant improvements in NOS activity and NO production in the blood vessels of rats with high blood pressure.

Another study published in the Journal of Agricultural and Food Chemistry found that grape seed extract increased NOS activity and NO production in human umbilical vein endothelial cells, which line the inner surface of blood vessels.

While these findings suggest that grape seed extract may have potential benefits for NOS and NO, it’s worth noting that more research is needed to fully understand the effects of grape seed extract on cardiovascular health and NOS activity in humans.

 

How Does It Boost NOS?

The exact mechanism by which grape seed extract may boost nitric oxide synthase (NOS) activity and nitric oxide (NO) production is not fully understood. However, several potential mechanisms have been proposed.

One potential mechanism is that grape seed extract contains high levels of antioxidants, including flavonoids and proanthocyanidins, which may help to reduce oxidative stress and inflammation. Oxidative stress and inflammation can impair NOS activity and NO production, so reducing these factors may help to support NOS and NO.

Another potential mechanism is that grape seed extract may help to increase the availability of the amino acid arginine, which is a precursor for nitric oxide synthesis. Arginine is converted to NO by NOS, so increasing the availability of arginine may help to support NOS and NO production.

Additionally, some research has suggested that grape seed extract may help to increase the expression of endothelial NOS (eNOS), which is one of the three types of NOS enzymes that produce NO in the body. By increasing eNOS expression, grape seed extract may help to support NOS and NO production in the endothelial cells that line the inner surface of blood vessels.

While more research is needed to fully understand the mechanisms by which grape seed extract may support NOS and NO production, these potential mechanisms suggest that grape seed extract may benefit cardiovascular health.

Hawthorne Berry

Hawthorn berry has been suggested to potentially support nitric oxide synthase (NOS) activity and nitric oxide (NO) production through a few different mechanisms.

Firstly, hawthorn berry contains high levels of flavonoids, including vitexin and rutin, which have been shown to have antioxidant and anti-inflammatory properties. Oxidative stress and inflammation can impair NOS activity and NO production, so reducing these factors may help to support NOS and NO.

Secondly, hawthorn berry has been suggested to help increase the availability of the amino acid arginine, a precursor for nitric oxide synthesis. Arginine is converted to NO by NOS, so increasing the availability of arginine may help to support NOS and NO production.

Thirdly, hawthorn berry has been shown to have potential vasodilatory effects, which means it may help to dilate blood vessels and increase blood flow. This may help to support NOS and NO production by providing more oxygen and nutrients to the endothelial cells that produce NO.

Finally, hawthorn berry has been suggested to have potential benefits for endothelial function, which is closely related to NOS and NO production. Endothelial cells produce NO through the action of NOS, and endothelial dysfunction has been linked to impaired NOS activity and reduced NO production. By supporting endothelial function, hawthorn berries may help to support NOS and NO production.